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tion will differ only slightly from the zero-order wave function, and the true
eigenvalue will differ only slightly from the zero-order eigenvalue.

Figure 7.3b shows the correct shape for the true eigenfunction. The shape
can be derived qualitatively by simple arguments. Near x = L/2, and without
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Fig. 7.3. A one-dimensional system containing a small,
central potential well.

the perturbing well, the curvature of i, (d%J/dx?) is nearly constant. When' the
new well is added, the curvature of i in the region B must be considerably
greater than it was before, and therefore greater than the curvature just outside
the well. This occurs since, in the region B, the difference between the potential
energy and the total energy is much greater. Inside the region B the true wave
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(¢o)2 2-2x10* / (b)

Fig. 7.4. A sample calculation using perturbation theory.

and the energy eigenvalues are,
W2 = n?n2h2[2mL>?
Let the mass = 9.11 x 10728 gm, L = 10~® cm. Since /4 = 1.054 X 10727
erg sec, we have '
$? =1/2 x 108 sin nrx/10-8 (cm)~—1/2
The lowest energy level is®
W =6-0x 10 erg, or 38 e.v.

5If h = 1.054 x 10~ joule sec, m =9.11 x 10-3 kg, and L = 10" m, then
W? =6.0 x 10718 joule (1 e.v. = 1.6 X 10~ joule).
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With the aid of Figure 7.4d, one can see at once that H,; = 0, and there-
fore a,=0.

As higher a,’s are calculated, one should use exact integration in the
calculation of the intensity of the odd-numbered components, because the eigen-
functions vary more rapidly inside the perturbing well, although by symmetery
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Fig. 7.5. The calculated corrections to the zero-order state
4 of the system of Figure 7-4.

all of the even-numbered components are always exactly zero. Because the
denominator W9 — W? appears in the calculation of a;, the magnitude of aj
becomes smaller with increasing W9§ — W09,

Continuing the calculation of the a,’s, we find the amplitude of the terms
up through n = 9. These are shown in Figure 7.5. The component wave
functions are drawn to scale, with the correct sign. At the bottom of Figure
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Section 6.3: The Fine Structure of Hydrogen 267

TABLE 6.1: Hierarchy of corrections to the
Bohr energies of hydrogen.

Bohr energies:  of order  a®mc?

Fine structure:  of order a*mc?
Lamb shift: of order oSmc?

Hyperfine splitting:  of order (m/mp)()e“mc‘2

nucleus: Just replace m by the reduced mass (Problem 5.1). More significant is
the so-called fine structure, which is actually due to two distinct mechanisms: a
relativistic correction, and spin-orbit coupling. Compared to the Bohr energies
(Equation 4.70), fine structure is a tiny perturbation—smaller by a factor of o2,
where
¢ o] 6.43
* = Gxeone ~ 137.036 (6431
is the famous fine structure constant. Smaller still (by another factor of «) is the
Lamb shift, associated with the quantization of the electric field, and smaller by
yet another order of magnitude is the hyperfine structure, which is due to the
magnetic interaction between the dipole moments of the electron and the proton.
This hierarchy is summarized in Table 6.1. In the present section we will analyze
the fine structure of hydrogen, as an application of time-independent perturbation
theory.

Problem 6.11

(a) Express the Bohr energies in terms of the fine structure constant and the rest
energy (mc?) of the electron.

(b) Calculate the fine structure constant from first principles (i.e., without recourse
to the empirical values of €, e, #, and c). Comment: The fine structure con-
stant is undoubtedly the most fundamental pure (dimensionless) number in all
of physics. It relates the basic constants of electromagnetism (the charge of
the electron), relativity (the speed of light), and quantum mechanics (Planck’s
constant). If you can solve part (b), you have the most certain Nobel Prize
in history waiting for you. But I wouldn’t recommend spending a lot of time
on it right now; many smart people have tried, and all (so far) have failed.

6.3.1 The Relativistic Correction

The first term in the Hamiltonian is supposed to represent kinetic energy:

T = Emv = —, [6.44]



11,7 THE ENERGY LEVELS OF HYDROGEN,
INCLUDING FINE STRUCTURE,

THE LAMB SHIFT,

AND HYPERFINE SPLITTING

Adding the energy shifts (11.89), (11.111). and (11.114) together, we obtain

M (n (M _ oy _ m.c*(Za) 13 ‘
EK +ES“'0+ED - En,j - 2113 j+% I’; (ll.l]h

Notice that the magnitude of the total energy shift is of order (Za)? times th
unperturbed energy (10.34) of the atom. In particular, for hydrogen (Z = 1), th
energy shift is roughly 107% as large as the unperturbed energy. Thus the per
turbations do indeed contribute a fine structure to the energy levels—hence th



potential is solved exactly.*’
In 1947 W. E. Lamb and R. C. Retherford observed a very small cn-

ergy difference between the 2s,, and the 2p - levels through the absorption of
microwave radiation with a frequency of 1058 MHz, corresponding to an energy
splitting of 4.4 X 1076 eV (see Fig. 11.106).!* This Lamb shift. which is of the
order m,c}(Za)*a loga, can be explained by quantum electrodynamics in terms
of the interaction of the electron with the quantized electromagnetic field.!* The

1! The exact encrgy cigenvalues for the Dirac equation with a Coulomb potential are given by
-1

-

2 l-;- Za -1

n=G+ e+ Ju+ D - Zay

Ey, = m,c

12 W. E. Lamb and R. C. Retherford. Phys. Kev. 72, 241 (1947); 86, 1014 (1952). This latter paper
contains their most precise results. Lamb received the Nobel prize in 1933 for this work,

13 We examine the quantized electromagnetic ficld in Chupter 14. However, we will not attempt to
work out the value of the Lamb shift, which is itself a taxing problem. For an interesting discussion of
the difficulties that this calculation presented to R. P Feynman and H. Bethe, two of the more clever
physicists at performing calculations. see Feynman's Nobel prize speech in Nobel Lectures— Physics,
vol. I11, Elsevier Publications, New York, 1972.

TIME-INDEPENDENT PERTURBATIONS 333

Lamb shift has been measured to five significant figures, providing one of the
most sensitive tests of quantum electrodynamics (QED). Note that the magnitude
of the Lamb shift is roughly 107° of the spacing between levels that produce the
Balmer series. Thus, measuring the shift itself with an accuracy of one part in
10° by detecting the difference in wavelength of visible photons emitted as the
atom makes transitions from higher energy states to the 25, or 2 p,, states would
require a resolution of 1 part in 10''! The main reason that we can isolate these
QED corrections experimentally with such precision is the fortunate degeneracy,
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The fine structure of hydrogen (6amwinN)

According to special relativity, the kinetic energy (i.e., the difference between the total
energy and the rest mass energy) of a particle of rest mass m and momentum p is

T = \,x‘fp3 A 4+micti—me. (945)

In the non-relativistic limit p < m ¢, we can expand the square-root in the above

expression to give

pj 17 ph 2 p o 4
T = 1 — — + O . (946)
2m 4 ( m o ) K . ,)
Hence,
2 4
T ~ P ]-"‘ . 01
2 m 8 7n-—' L\:

Of course, we recognize the first term on the right-hand side of this equation as the
standard non-relativistic expression for the kinetic energy. The second term is the
lowest-order relativistic correction to this energy. Let us consider the effect of this type of
correction on the energy levels of a hydrogen atom. So, the unperturbed Hdmlltomdn is
given by Eq. (890), and the perturbing Hamiltonian takes the form

H =——+ (948)

Now, according to standard first-order perturbation theory (see Sect. 12 .4), the
lowest-order relativistic correction to the energy of a hydrogen atom state characterized by
the standard quantum numbers 7, {,and m is given by

1 of 7 5/18/10 10:18 PM
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where L = m_r X v is the electron's orbital angular momentum. This effect is known as

spin-orbit coupling. It turns out that the above expression is too large, by a factor 2. due to
an obscure relativistic effect known as Thomas precession. Hence, the true spin-orbit
correction to the Hamiltonian is

H, = L-S. (959)

Let us now apply perturbation theory to the hydrogen atom, using the above expression as
the perturbing Hamiltonian.

Now

J=L+S (060)

is the total angular momentum of the system. Hence,

J?=L*+5°+2L"S, 961

giving

(J? — L2 - 5°). (962)

Recall, from Sect. 11.2, that whilst J? commutes with both L? and S?, it does not
commute with either L, or S..It follows that the perturbing Hamiltonian (959) also

commutes with both L2 and S?, but does not commute with either L, or S, . Hence, the

simultaneous eigenstates of the unperturbed Hamiltonian (890) and the perturbing
Hamiltonian (959) are the same as the simultaneous eigenstates of L? S? and J?
discussed in Sect. 11.3. It is important to know this since, according to Sect. 12.6, we can
only safely apply perturbation theory to the simultaneous eigenstates of the unperturbed
and perturbing Hamiltonians.

(2)

“} . .
Adopting the notation introduced in Sect. 11.3, let v s be a simultaneous eigenstate

40f7 5/18/10 10:18 PM
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tion will differ only slightly from the zero-order wave function, and the true
eigenvalue will differ only slightly from the zero-order eigenvalue.

Figure 7.3b shows the correct shape for the true eigenfunction. The shape
can be derived qualitatively by simple arguments. Near x = L/2, and without
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Fig. 7.3. A one-dimensional system containing a small,
central potential well.

the perturbing well, the curvature of i, (d%J/dx?) is nearly constant. When' the
new well is added, the curvature of i in the region B must be considerably
greater than it was before, and therefore greater than the curvature just outside
the well. This occurs since, in the region B, the difference between the potential
energy and the total energy is much greater. Inside the region B the true wave
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(Sec. 2) A SAMPLE CALCULATION - 17§

(¢o)2 2-2x10* / (b)

Fig. 7.4. A sample calculation using perturbation theory.

and the energy eigenvalues are,
W2 = n?n2h2[2mL>?
Let the mass = 9.11 x 10728 gm, L = 10~® cm. Since /4 = 1.054 X 10727
erg sec, we have '
$? =1/2 x 108 sin nrx/10-8 (cm)~—1/2
The lowest energy level is®
W =6-0x 10 erg, or 38 e.v.

5If h = 1.054 x 10~ joule sec, m =9.11 x 10-3 kg, and L = 10" m, then
W? =6.0 x 10718 joule (1 e.v. = 1.6 X 10~ joule).
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With the aid of Figure 7.4d, one can see at once that H,; = 0, and there-
fore a,=0.

As higher a,’s are calculated, one should use exact integration in the
calculation of the intensity of the odd-numbered components, because the eigen-
functions vary more rapidly inside the perturbing well, although by symmetery
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Fig. 7.5. The calculated corrections to the zero-order state
4 of the system of Figure 7-4.

all of the even-numbered components are always exactly zero. Because the
denominator W9 — W? appears in the calculation of a;, the magnitude of aj
becomes smaller with increasing W9§ — W09,

Continuing the calculation of the a,’s, we find the amplitude of the terms
up through n = 9. These are shown in Figure 7.5. The component wave
functions are drawn to scale, with the correct sign. At the bottom of Figure
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From: Larry Sorensen <seattle@u.washington.edu>
Subject: How is a Fermi problem like a joke?

Hi Anon,

Your problem is a Fermi problem, but as you point out it is probably
a little too easy. It is also very close to the piano tuner problem.

Finally, it doesn't have the surprise factor:

"Upon first hearing them, we don’t have even the remotest notion
what the answer might be, and we feel certain that too little
information has been provided to find a solution."

In jokes, the surprise factor---the punch line--- comes at the end.
In Fermi problems, the surprise factor comes at the beginning.

Try to think up something that has a big surprise factor. Of course,
as you do more and more Fermi problems, you will become better
and better at them, and it will be harder and harder to find big
surprise factors.

You might also find it helpful to google "fermi problems" to get
some more ideas:

http://en.wikipedia.org/wiki/Fermi_problem
http://www.physics.umd.edu/perg/fermi/fermi.htm
http://iws.ccccd.edu/mbrooks/demos/fermi_questions.htm
http://mathforum.org/workshops/sum96/interdisc/sheilal.html
http://en.wikipedia.org/wiki/Fermi_paradox

The creative challenge is how to pose something that has
a big surprise factor.



Fermi Questions - Classic Fermi Questions and Annotated Solutions 5/24/10 6:47 AM

Number of beans = (.80 x 1000 cubic centimeters)/(27/8 cubic centimeters) =
approx 240 jelly beans

Solution 2

Construct or visualize a paper cube that measures 1 cubic inch.

How many jelly beans will fit in the cube?
Approximately 4

How many cubic inches are there in 1 liter?
1 inch = approx 2.54 centimeters. Therefore 1 cubic inch = approx. 16 cubic centimeters
1000 cubic centimeters/16 cubic centimeters = approx 62 cubic inches in one liter.

How many jelly beans are there in the one liter container?

62 x 4 = approximately 248 jellybeans

Fermi Questions - General Collection

10.

. The mass of how many Ford Mustangs is equal to the mass of the water in the Atlantic

Ocean?

How many jelly beans fill a one-liter jar?

What is the mass in kilograms of the student body in your school?

How many golf balls will fit in a suitcase?

How many gallons of gasoline are used by cars each year in the United States?

How high would the stack reach if you piled on trillion dollar bills in a single stack?

. Approximately what fraction of the area of the continental United States is covered by

automobiles?
How many hairs are on your head?
What is the weight of solid garbage thrown away by American families every year?

If your life earnings were doled out to you at a certain rate per hour for every hour of
your life, how much is your time worth?

http://iws.ccccd.edu/mbrooks/demos/fermi_questions.htm Page 3 of 4



Fermi Questions - Classic Fermi Questions and Annotated Solutions 5/24/10 6:47 AM

11. How many cells are there in the human body?

12. How many individual frames of film are needed for a feature-length film? How long is
such a film?

13. How many water balloons will it take to fill the school gymnasium?
14. How many flat toothpicks would fit on the surface of a sheet of poster board?

15. How many hot dogs will be eaten at major league baseball games during a one year
season?

16. How many revolutions will a wheel on the bus make during our seventh grade trip from
Baton Rouge, LA to Washington, D.C.?

17. How many minutes will be spent on the phone by middle school students in the United
States?

18. How many pizzas will be ordered in your state this year?

http://iws.ccccd.edu/mbrooks/demos/fermi_questions.htm Page 4 of 4
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The Fermi Solution

At twenty-nine minutes past five, on a Monday morning in July
of 1945, the world’s first atom bomb exploded in the desert
sixty miles northwest of Alamogordo, New Mexico. Forty sec-
onds later, the blast’s shock wave reached the base camp,
where a cluster of scientists stood in stunned contemplation of
the historic spectacle. The first person to stir was the Italian-
American physicist Enrico Fermi, who was on hand to witness
the culmination of a project he had helped to initiate.
Before the bomb detonated, Fermi had torn a sheet of
notebook paper into small bits. Then, as he felt the first quiver
of the shock wave spreading outward through the still air, he
released the shreds above his head. They fluttered down and
away from the mushroom cloud growing on the horizon, land-
ing about two and a half yards behind him. After a brief mental
calculation, Fermi announced that the bomb’s energy had
been equivalent to that produced by ten thousand tons of
TNT. Sophisticated instruments were also at the site, and
analysis of their readings of the shock wave’s velocity and
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pressure, an exercise that took several weeks to complete, con-
firmed Fermi’s instant estimate.

The bomb-test team was impressed, but not surprised, by
this brilliant bit of scientific improvisation. Enrico Fermi’s
genius was known throughout the world of physics. In 1938 he
had won a Nobel Prize for his work on elementary particles,
and four years later, in Chicago, had produced the first sus-
tained nuclear chain reaction, thereby ushering in the age of
atomic weapons and commercial nuclear power. No other
physicist of his generation, and no one since, has been at once
a masterly experimentalist and a leading theoretician. In minia-
ture, the bits of paper and the analysis of their motion exempli-
fied this unique combination of gifts.

Like all virtuosos, Fermi had a distinctive style. His approach
to physics brooked no opposition; it simply never occurred to
him that he might fail to find the solution to a problem. His
scientific papers and books reveal a disdain for embellish-
ment—a preference for the most direct, rather than the most
intellectually elegant, route to an answer. When he reached
the limits of his cleverness, Fermi completed a task by brute
force. ~

To illustrate this approach, imagine that a physicist must
determine the volume of an irregular object—say, Earth, which
is slightly pear-shaped. He might feel stymied without some
kind of formula, and there are several ways he could go about
getting one. He could consult a mathematician, but finding
one with enough knowledge and interest to be of help might
be difficult. He could search through the mathematical litera-
ture, a time-consuming and probably fruitless exercise because
the ideal shapes that interest mathematicians often do not
match those of the irregular objects found in nature. Or he
could set aside his own research in order to derive the formula
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from basic mathematical principles, but, of course, if he had
wanted to devote his time to theoretical geometry, he wouldn’t
have become a physicist.

Alternatively, the physicist could do what Fermi would have
done—compute the volume numerically. Instead of relying on
a formula, he could mentally divide the planet into a large
number of tiny cubes, each with a volume easily determined
by multiplying the length times the width times the height,
and then add together the answers to these more tractable
problems. This method yields only an approximate solution,
but it is sure to produce the desired result, which is what
mattered to Fermi. With the introduction of computers after
the Second World War and, later, of pocket calculators, nu-
merical computation has become standard procedure in phys-
ICS.

The technique of dividing difficult problems into small,
manageable ones applies to many problems besides those ame-
nable to numerical computation. Fermi excelled at this rough-
and-ready modus operandi, and, to pass it on to his students,
he developed a type of question that has become associated
with his name. A Fermi problem has a characteristic profile:
Upon first hearing it, one doesn’t have even the remotest
notion of what the answer might be, and one feels certain that
too little information has been provided to find a solution. Yet,
when the problem is broken down into subproblems, each one
answerable without the help of experts or reference books, an
estimate can be made, either mentally or on the back of an
envelope, that comes remarkably close to the exact solution.

Suppose, for example, that one wants to determine Earth’s
circumference without looking it up. Everyone knows that
New York and Los Angeles are separated by about three thou-
sand miles and that the time difference between the two coasts
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is three hours. Three hours corresponds to one eighth of a day,
and a day is the time it takes the planet to complete one
revolution, so its circumference must be eight times three
thousand, or twenty-four thousand miles—an answer that dif-
fers from the true value (at the equator, 24,902.45 miles) by
less than 4 percent. In John Milton’s words:

so easy it seemed

Once found, which yet unfound most
would have thought

Impossible.

Fermi problems might seem to resemble the brainteasers
that appear among the back pages of airline magazines and
other popular publications (Given three containers that hold
eight, five, and three quarts, respectively, how do you measure
out a single quart?), but the two genres differ significantly. The
answer to a Fermi problem, in contrast to that of a brainteaser,
cannot be verified by logical deduction alone and is always
approximate. (To determine earth’s circumference precisely,
the planet must actually be measured.) Then, too, solving a
Fermi problem requires a knowledge of facts not mentioned in
the statement of the problem. (In contrast, the decanting
puzzle contains all the information necessary for its solution.)

These differences mean that Fermi problems are more
closely tied to the physical world than mathematical puzzles,
which rarely have anything practical to offer physicists. By the
same token, Fermi problems are reminiscent of the ordinary
dilemmas that nonphysicists encounter every day of their lives.
Indeed, Fermi problems and the way they are solved not only
are essential to the practice of physics, but also teach a valuable
lesson in the art of living.



THE FERMI SOLUTION 7

How many piano tuners are there in Chicago? The whimsi-
cal nature of this question, the improbability that anyone
knows the answer, and the fact that Fermi posed it to his
classes at the University of Chicago have elevated it to the
status of legend. There is no standard solution (that’s exactly
the point), but anyone can make assumptions that quickly lead
to an approximate answer. Here is one way: If the population
of metropolitan Chicago is three million, an average family
consists of four people, and one third of all families own pianos,
there are two hundred and fifty thousand pianos in the city. If
every piano is tuned once every five years, fifty thousand pianos
must be tuned each year. If a tuner can service four pianos a
day, two hundred and fifty days a year, for a total of one
thousand tunings a year, there must be about fifty piano tuners
in the city. The answer is not exact; it could be as low as
twenty-five or as high as a hundred. But, as the yellow pages
of the telephone directory attest, it is definitely in the ballpark.

Fermi’s intent was to show that although, at the outset, even
the answer’s order of magnitude is unknown, one can proceed
on the basis of different assumptions and still arrive at esti-
mates that fall within range of the answer. The reason is that,
in any string of calculations, errors tend to cancel one another
out. If someone assumes, for instance, that every sixth, rather
than third, family owns a piano, they are just as likely to assume
that pianos are tuned twice in five years, instead of once. It is
as improbable that all of one’s errors will be underestimates (or
overestimates) as it is that all the throws in a series of coin
tosses will be heads (or tails). The law of probabilities dictates
that deviations from the correct assumptions will tend to com-
pensate for one another, so the final results will converge to-
ward the right number.

Of course, the Fermi problems that physicists face deal more
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often with atoms and molecules than with pianos. To answer
them, one needs to commit to memory a few basic magnitudes,
such as the approximate radius of a typical atom or the number
of molecules in a thimbleful of water. Equipped with such
facts, one can estimate, for example, the distance a car must
travel before a layer of rubber about the thickness of a molecule
is worn off the tread of its tires. It turns out that that much
is removed with each revolution of the wheels, a reminder of
the immensity of the number of atoms in a tire. (Assume that
the tread is about a quarter-inch thick and that it wears off in
forty thousand miles of driving. If a quarter inch is divided by
the number of revolutions a typical wheel, six feet in circumfer-
ence, makes in forty thousand miles, the answer is roughly a
hundred millionth of an inch, or a molecular diameter.)
More momentous Fermi problems might concern energy
policy (the number of solar cells required to produce a certain
amount of electricity), environmental quality (the amount of
acid rain caused annually by coal consumption in the United
States), or military technology. A good example from the weap-
ons field was proposed in 1981 by David Hafemeister, a physi-
cist at the California Polytechnic State University: For what
length of time would the beam from the most powerful laser
have to be focused on the skin of an incoming missile to ignite
the chemical explosives in the missile’s nuclear warhead? The
key point is that a beam of light, no matter how well focused,
spreads out like an ocean wave entering the narrow opening of
a harbor, a phenomenon called diffraction broadening. The
formula that describes such spreading applies to all forms of
waves, including light waves, so, at a typical satellite-to-missile
distance of, perhaps, seven hundred miles, a laser’s energy will
become considerably attenuated. With some reasonable as-
sumptions about the temperature at which explosive materials
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ignite (say, a thousand degrees Fahrenheit), the diameter of
the mirror that focuses the laser beam (ten feet is about right),
and the maximum available power of chemical lasers (a level
of a million watts is conceivable), the answer turns out to be
around ten minutes.

Trying to keep a laser aimed at a speeding missile at a
distance of seven hundred miles for ten minutes is a task that
greatly exceeds the capacity of existing technology. For one
thing, the missile travels so rapidly that it would be impossible
to keep it within the laser’s range. For another, a laser beam
must reflect back toward its source to verify that it is hitting
its target, which would be comparable to aiming a flashlight at
a small mirror carried by a running man at the opposite end
of a football field in such a way that the light reflected from
the mirror would shine back into one’s eyes.

The solution of this Fermi problem depends on more facts
than average people, or even average physicists, have at their
fingertips, but for those who do have them in mind, the calcula-
tion takes only a few minutes, and produces a result that is
no less accurate for being easy to perform. Therefore, Hafe-
meister’s simple conclusion, which predated President Rea-
gan’s 1983 Star Wars speech, agrees roughly with the findings
of the American Physical Society’s 1987 report entitled Science
and Technology of Directed Energy Weapons, which was the
result of much more elaborate analysis. Prudent physicists—
those who want to avoid false leads and dead ends—operate
according to a long-standing principle: Never start a lengthy
calculation until you know the range of values within which the
answer is likely to fall (and, equally important, the range within
which the answer is unlikely to fall). They attack every problem
as a Fermi problem, estimating the order of magnitude of the
result before engaging in an investigation.
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Physicists also use Fermi problems to communicate with
one another. When they gather in university hallways, con-
vention-center lobbies, or cozy restaurants to discuss a new
experiment or theory, they often first survey the territory by
staking out, in a numerical way, the perimeter of the problem
at hand. Only the timid hang back, deferring to the experts
in their midst. Those accustomed to tackling Fermi problems
approach the subject as if it were their own, demonstrating
their understanding by performing rough calculations. If the
conversation turns to a new particle accelerator, for example,
they will estimate the strength of the magnets it requires; if
the subject is the structure of a novel crystal, they will calcu-
late the spacing between its atoms. Everyone tries to arrive at
the correct answer with the least amount of effort. It is this
spirit of independence, which he himself possessed in ample
measure, that Fermi sought to instill by posing his unconven-
tional problems.

Questions about atom bombs, piano tuners, automobile
tires, laser weapons, particle accelerators, and crystal structure
have little in common. But the means by which they are
answered is the same in every case, and can be applied with
equal success to questions outside the realm of physics.
Whether the problem concerns cooking, automobile repair,
or personal relationships, there are two basic types of re-
sponses: the fainthearted turn to authority—to reference
books, bosses, expert consultants, physicians, ministers—
while the independent of mind delve into that private store
of common sense and limited factual knowledge that every-
one carries, make reasonable assumptions, and derive their
own, admittedly approximate, solutions. Stripped transmis-
sions and severe depressions usually require professional help
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but more mundane challenges—preparing chili from scratch,
replacing a water pump, resolving a family quarrel—can often
be sorted out with nothing more than logic, common sense,
and patience.

The similarities between technical problems and human
ones is explored in Robert M. Pirsig’s 1974 book, Zen and the
Art of Motorcycle Maintenance, in which the repair and up-
keep of a machine serves as a metaphor for rationality itself. At
one point the protagonist proposes to fix the slipping handle-
bars of a friend’s new BMW motorcycle, the pride of a half
century of German mechanical craftsmanship, with a piece of
an old beer can. Although the proposal happens to be techni-
cally perfect (the aluminum is thin and flexible), the cycle’s
owner, a musician, cannot break his reliance on authority; since
the idea did not come from a factory-trained mechanic, it does
not deserve serious consideration. In the same way, certain
observers would have been skeptical of Fermi’s analysis, carried
through with the aid of a handful of confetti, of a two-billion-
dollar bomb test. Such an attitude demonstrates less, perhaps,
about their knowledge of the problem than about their attitude
toward life. As Pirsig put it, “The real cycle you're working on
is a cycle called ‘yourself.” ”

Ultimately, the value of dealing with the problems of sci-
ence, or those of everyday life, in the way Fermi did lies in the
rewards one gains for making independent discoveries and
inventions. It doesn’t matter whether the discovery is as mo-
mentous as the determination of the yield of an atom bomb
or as insignificant as an estimate of the number of piano tuners
in a Midwestern city. Looking up the answer, or letting some-
one else find it, actually impoverishes one; it robs one of the
pleasure and pride that accompany creativity and deprives one
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of an experience that, more than anything else in life, bolsters
self-confidence. Self-confidence, in turn, is the essential
prerequisite for solving Fermi problems. Thus, approaching
personal dilemmas as Fermi problems can become, by a kind
of chain reaction, a habit that enriches life.





